How to AI (Almost) Anything Lecture 3 – Common model architectures

Paul Liang Assistant Professor MIT Media Lab & MIT EECS

https://pliang279.github.io ppliang@mit.edu @pliang279

Assignments for This Coming Week

For project:

- 4-page project proposal due tonight (2/25), email to me.
- Meet with me after class 2-3pm if need feedback about proposal ideas.

Reading assignment due tomorrow Wednesday (2/26).

This Thursday (2/27): first reading discussion on **data and learning**.

Bitter lesson Grokking/double descent

Logistics – Reading Assignments

Roles and Grading

Role assignments for every reading are linked here

Scientific Peer Reviewer

Task: Complete a full review of the paper, recommending acceptance or rejection, and address all prompts in the review form (e.g., technical soundness, clarity, originality, significance). See <u>an example of</u> review instructions here (navigate <u>down</u> to 'review form').

Grading

(Unacceptable)

- Review is incomplete or missing major components.
- Minimal effort with vague or unsubstantiated comments.
- No clear recommendation or justification provided.

(Needs Improvement)

- Review touches on a few relevant points but lacks depth and critical evaluation.
- Feedback is superficial and misses key aspects of the paper.

(Adequate)

- Provides a basic review covering most areas.
- Offers some useful feedback but misses deeper analysis or constructive suggestions.
- The recommendation is justified but could be stronger.

🖪 (Good)

- Thoughtful, thorough review with balanced criticism and praise.
- Clearly explains the paper's strengths and weaknesses.
- Provides helpful suggestions for improvement.

Logistics – Reading Assignments

	Roles per Week File Edit View	< ☆ 🖻 🕗 Insert Format Data Tools Ext	tensions Help								🖛 🕚 I		🛇 Share 👻 🤹
C		母号 100% ▾ \$ % .0		Defaul 👻 🗌	- 10 + B	I ÷ <u>A</u>	_ ቅ. ⊞ ∄	<u>∃</u> → <u></u> →	▼ ÷ ▼ A ▼	⊕ <u>+</u> ⊪	Υ 🖬 ד Σ		^
J21	▼ <i>f</i> x												
	А	В	С	D	E	F	G	н	I	J	к	L	М
1	Name	Email	reading 1 (2/27)	reading 2 (3/6)	reading 3 (3/13)	reading 4 (3/20)	reading 5 (4/17)	reading 6 (4/24)	reading 7 (5/1)		Legend		
2	Chenyu Zhang	chenyu_zhang@gse.harvard.edu	1		5		9				Index	Paper	Role
3	Gonzalo Minuto	gminuto@mit.edu	2		6		10				1	First	Scientific Peer Reviewer
4	Valdemar Danry	vdanry@media.mit.edu	3		7			1			2	2 First	Research Detective
5	Jiao Zhao	jiaoz17@mit.edu	4		8			2	2		3	B First	Academic Researcher
6	Kida Huang	chungtah@mit.edu	5		9			3	3		4	First	Implementation Explainer
7	(Michelle) Minsol Kim	minsol@mit.edu	6		10			4	Ļ		5	5 First	Impact Strategist
8	Ozgun Kilic Afsar	ozgun@media.mit.edu	7			1		5	5		e	Second	Scientific Peer Reviewer
9	Cathy Fang	catfang@media.mit.edu	8			2		6	5		7	Second	Research Detective
10	Kumar Tanmay	kumartanmay@fas.harvard.edu	9			3		7	,		8	8 Second	Academic Researcher
11	Chenjie Xiong	xiongc@mit.edu	10			4		8	3		Ş	Second	Implementation Explainer
12	Mike Jiang	mhjiang@mit.edu		1		5		9)		10	Second	Impact Strategist
13	Mingyang Sun	msun14@mit.edu		2	2	6		10)				
14	Yujia Qian	yjqian19@mit.edu		3	3	7			1				
15	Connie Cheng	conniec@mit.edu		4	•	8			2				
16	Sam Chin	chins@mit.edu		5	5	9			3		reminder of ro	le duties and g	rading
17	Nikhil Behari	nbehari@mit.edu		6	6	10			4				
18	Qingyun Liu	qingyun_liu@gsd.harvard.edu		7	,		1		5				
19	Richa Gupta	richag@mit.edu		8			2		6				
20	Chance Jiajie Li	jiajie@mit.edu		g			3		7				
21	Nelson Hidalgo	nelsonh@mit.edu		10)		4		8				
22	Nomy Yu	nomyyu@mit.edu			1		5		9				
23	Nicolas Stas	nstas@mit.edu			2		6		10				
24	Kushagra Tiwary	ktiwary@mit.edu			3		7						
25	Anku Rani	ankurani@mit.edu			4		8						
96	1												multisensory intelligence

Lecture Outline

A unifying paradigm of model architectures

Temporal sequence models

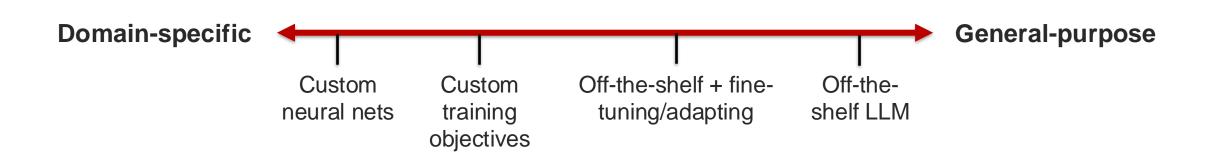
2

1

Spatial convolution models

Models for sets and graphs

Two General Modeling Paradigms



Your decision will depend on many factors.

Designing Models for Data

What is a good model?

One that captures the:

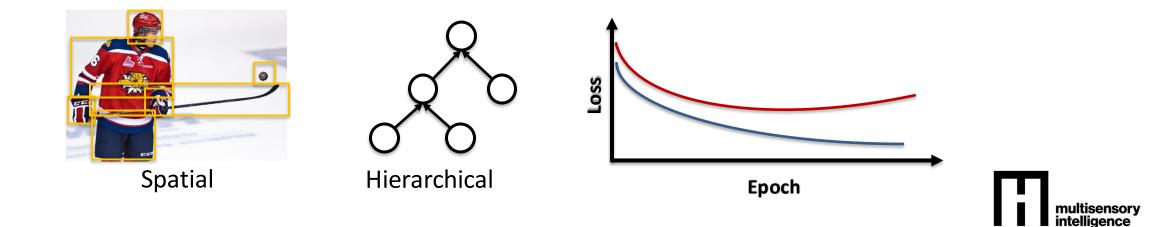
- right semantic information
- at the right granularity
- using an appropriate amount of data and labels
- with the right resource constraints
- with the right level of usability (explainability, accessibility, etc.)
- and more...

Domain-specific
General-purpose

Lecture Topics (subject to change, based on student interests and course discussions)

Domain-specific/custom models

Week 4 (2/25): Common model architectures Week 5 (3/4): Multimodal connections and alignment Week 6 (3/11): Multimodal interactions and fusion Week 7 (3/18): Cross-modal transfer



General architectures and adapting pre-trained models

Week 9 (4/1): Pre-training, scaling, fine-tuning LLMs Week 10 – No class, member's week Week 11 (4/15): Large multimodal models Week 12 (4/22): Modern generative Al

Element representations:

Discrete, continuous, granularity

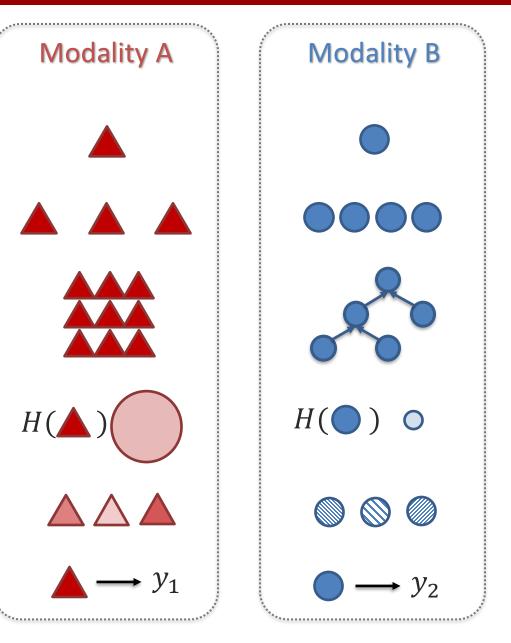
- **Element distributions:** Density, frequency
 - **Structure:** Temporal, spatial, latent, explicit
 - **Information:**

Abstraction, entropy

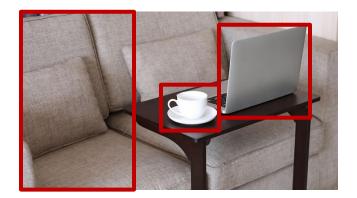
Noise:

Uncertainty, noise, missing data

Task, context dependence



The distribution of individual elements within that modality.



A **teacup** on the **right** of a **laptop** in a **clean room**.

Distribution: discrete or continuous, support

🔺 { 🗾 , 💽 ,

The frequency at which elements appear or are sampled.

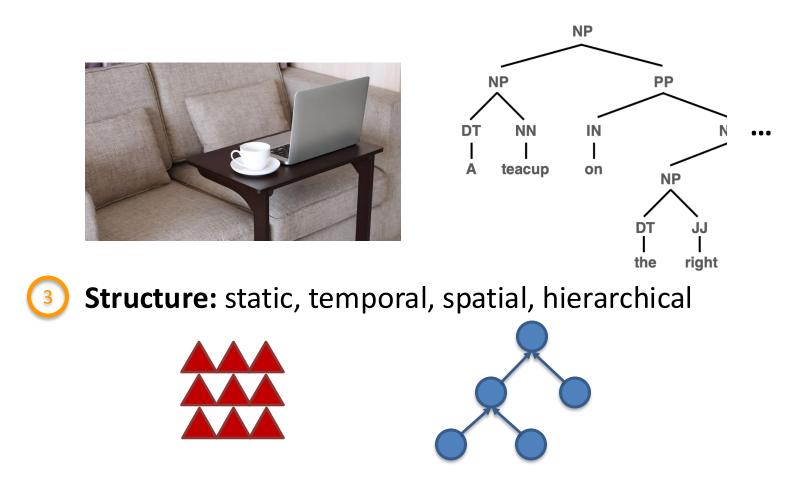
A teacup on the right of a laptop in a clean room.

Granularity: sampling rate and frequency

objects per image

words per minute

The way elements compose with each other to form entire data.

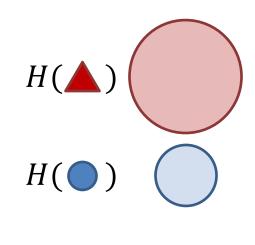


The total information contained in the elements and their composition.

A teacup on the right of a laptop in a clean room.

4

Information: entropy and density



The natural imperfections in the data modality.

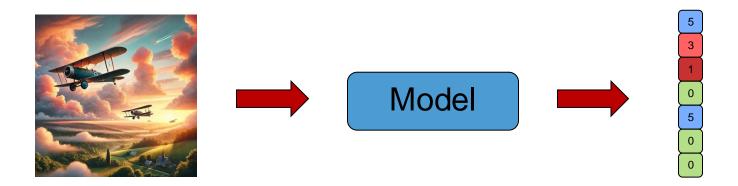
A teacup on the right of a laptop in a clean room.

Noise: uncertainty, signal-to-noise ratio, missing data

teacup → teacip right → rihjt

Unified View of Deep Learning Models

1. Learning representations



2. Combining representations (information aggregation)

Unified View of Deep Learning Models

Composing differentiable functions and training objectives.

Layer norm

Conv

1. Basic representation building blocks for each element

ReLU

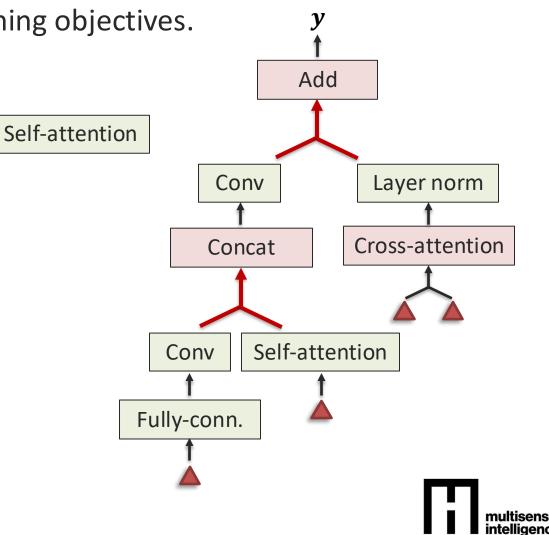
2. Basic information aggregation blocks

Concat	Cross-attention	Add	Max
--------	-----------------	-----	-----

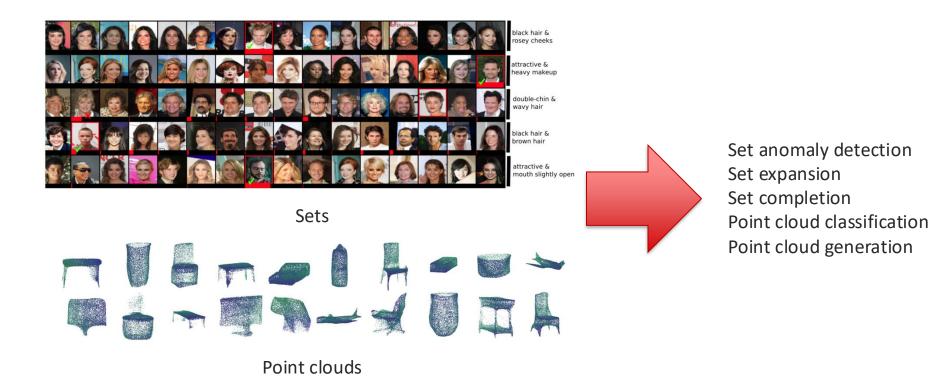
3. Compute loss function

Fully-connected

4. Take gradients, update with stochastic gradient descent

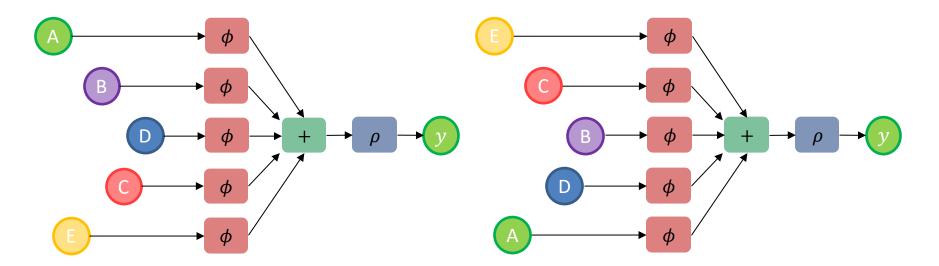


Sets and point clouds



Models for set-based data must be invariant to element order.

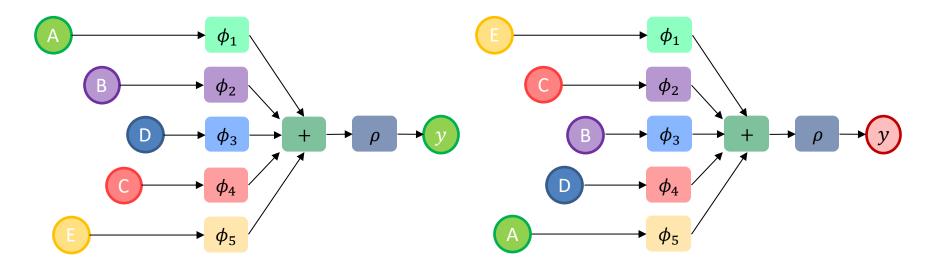
- 1. Parameter sharing for each set element
- 2. Permutation invariant aggregation function



Giving ABDCE also gives ECBDA, BCAED etc...

Models for set-based data must be invariant to element order.

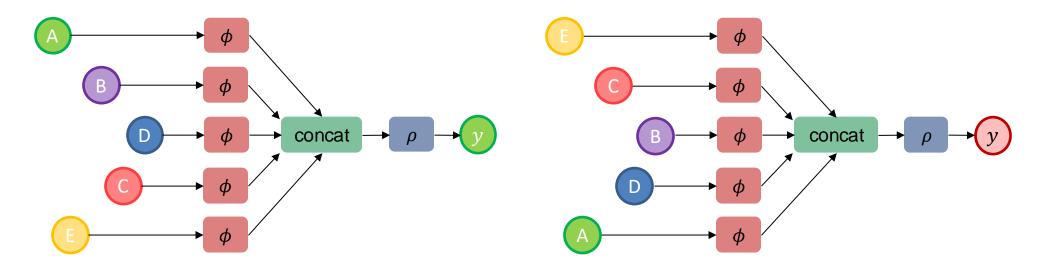
- 1. No parameter sharing for each set element
- 2. Permutation invariant aggregation function



Need to give ABDCE, then ECBDA, and more.... 5! more samples needed

Models for set-based data must be invariant to element order.

- 1. Parameter sharing for each set element
- 2. Not permutation invariant aggregation function

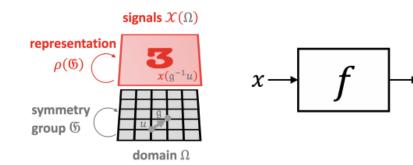


Need to give ABDCE, then ECBDA, and more.... 5! more samples needed

Structure

Data invariances – example of image classification

A function $f : \mathcal{X}(\Omega) \to \mathcal{Y}$ is \mathfrak{G} -invariant if $f(\rho(\mathfrak{g})x) = f(x)$ for all $\mathfrak{g} \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega)$, i.e., its output is unaffected by the group action on the input.



sunset

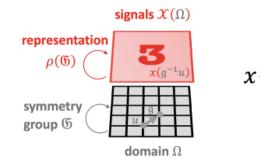
[Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodisics, and Gauges. arXiv 2021]

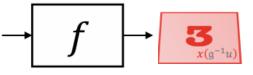
3

Structure

Data equivariances – example of image segmentation

A function $f : \mathcal{X}(\Omega) \to \mathcal{X}(\Omega)$ is \mathfrak{G} -equivariant if $f(\rho(\mathfrak{g})x) = \rho(\mathfrak{g})f(x)$ for all $\mathfrak{g} \in \mathfrak{G}$, i.e., group action on the input affects the output in the same way.

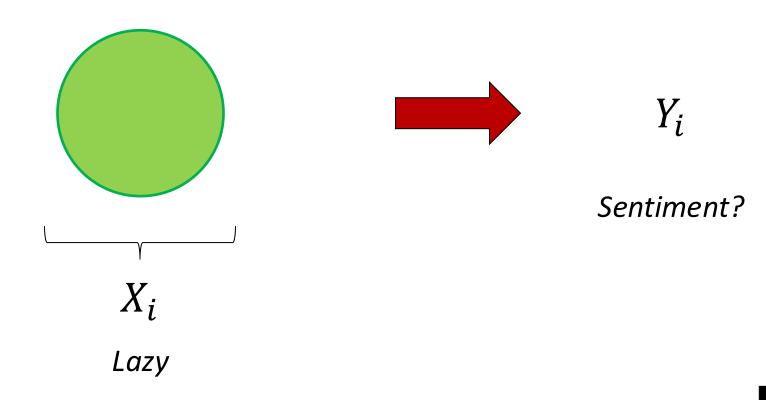


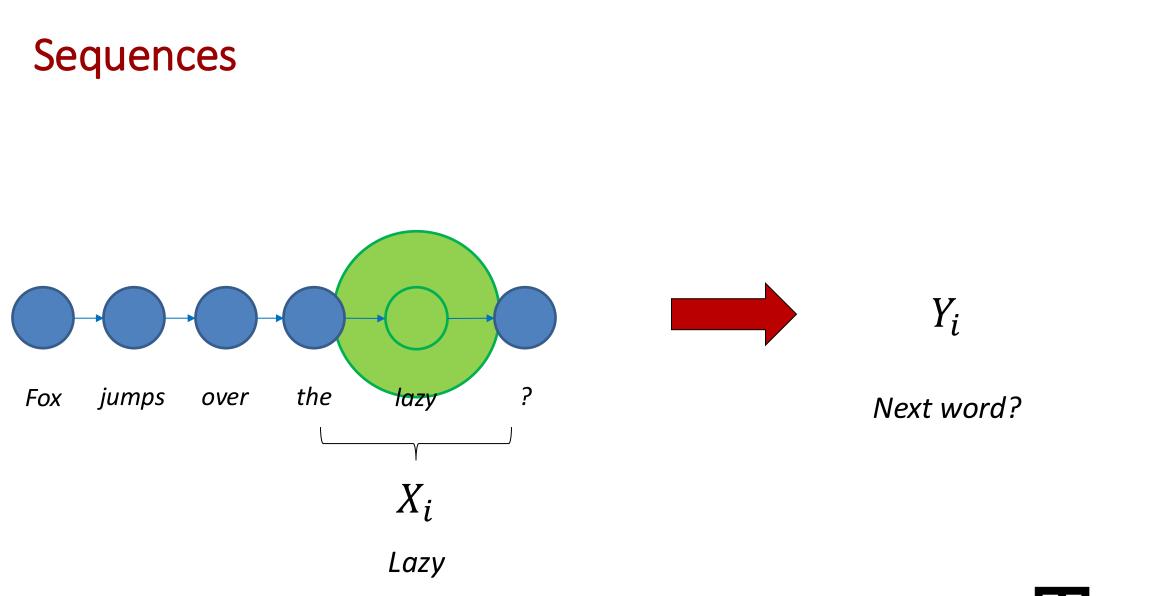




[Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodisics, and Gauges. arXiv 2021]

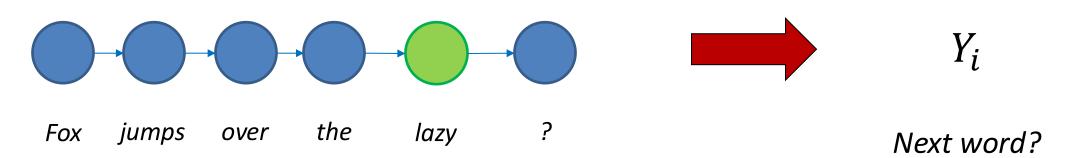
Elements





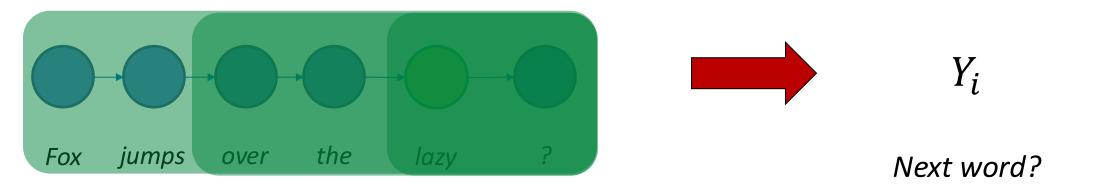
multisensory intelligence

Sequences



How do we aggregate information?

Sequences



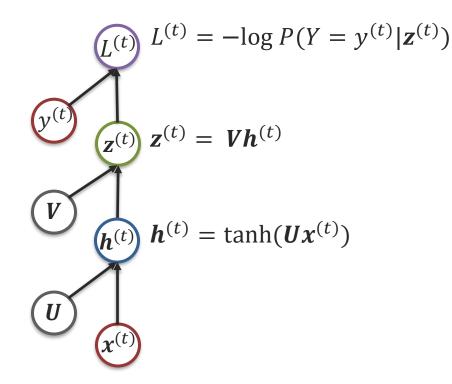
How do we aggregate information?

multisensory intelligence

Models for sequential data must be invariant to time, but equivariant to word order.

1. Parameter sharing across time steps Y 2. Information aggregation over time (autoregressive) φ ϕ Φ Φ \mathbf{D} Fox the jumps lazy over

Feedforward Neural Network



[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

$$L = \sum_{t} L^{(t)}$$

$$L^{(t)} L^{(t)} = -\log P(Y = y^{(t)} | z^{(t)})$$

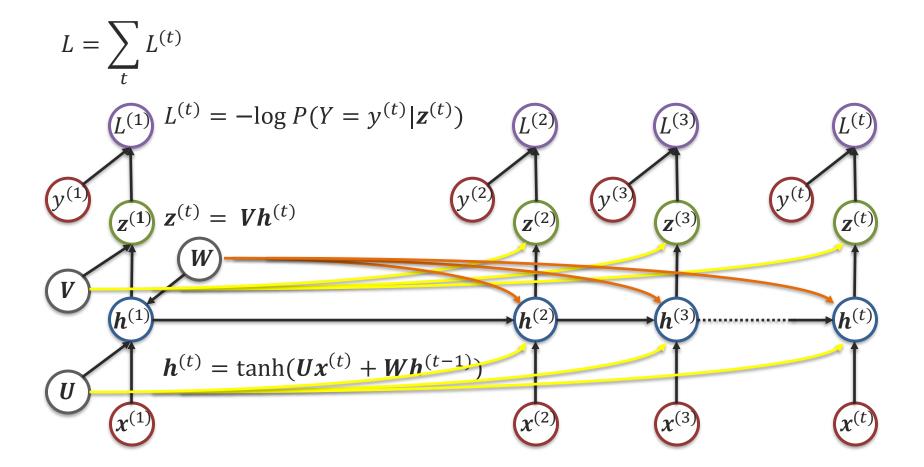
$$z^{(t)} z^{(t)} = Vh^{(t)}$$

$$W$$

$$h^{(t)} = \tanh(Ux^{(t)} + Wh^{(t-1)})$$

multisensory intelligence

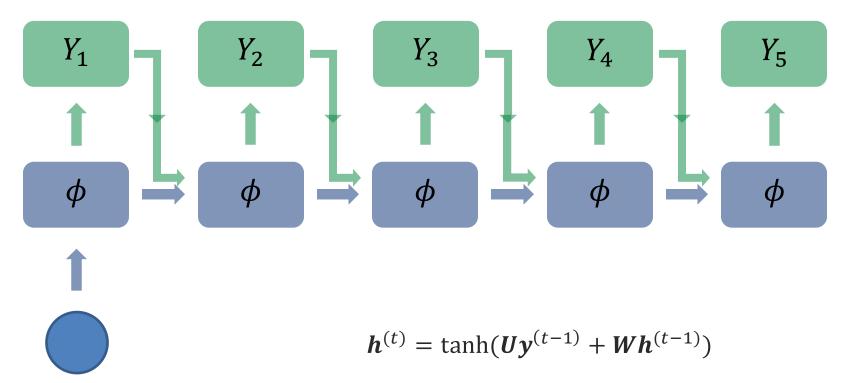
[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]



Same model parameters are used for all time steps.

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

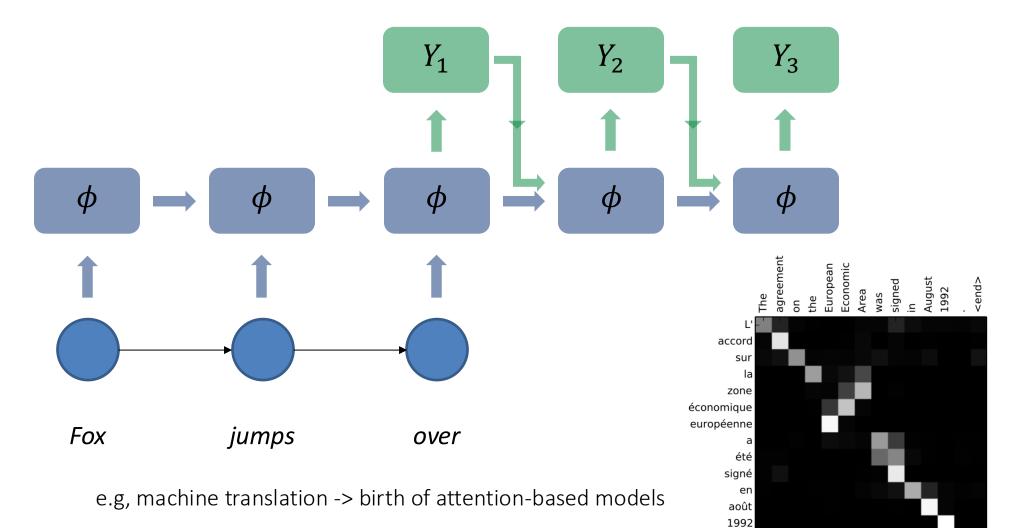
Sequence Generation



Fox

e.g, text or music generation Modern versions: RNN -> LSTM -> TCN -> State space models

Sequence-to-Sequence Models



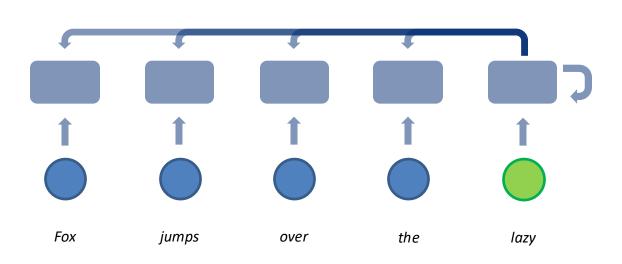
<end>

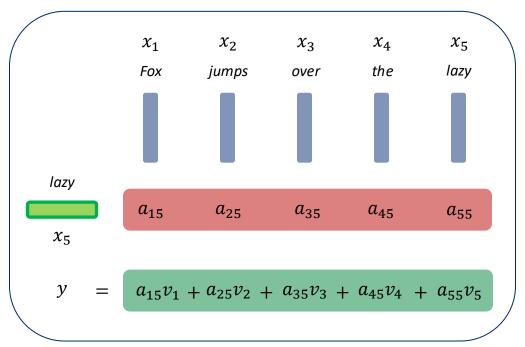
[Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015]

Modern Sequence Models

Birth of attention-based models

– Dynamic weights for different elements





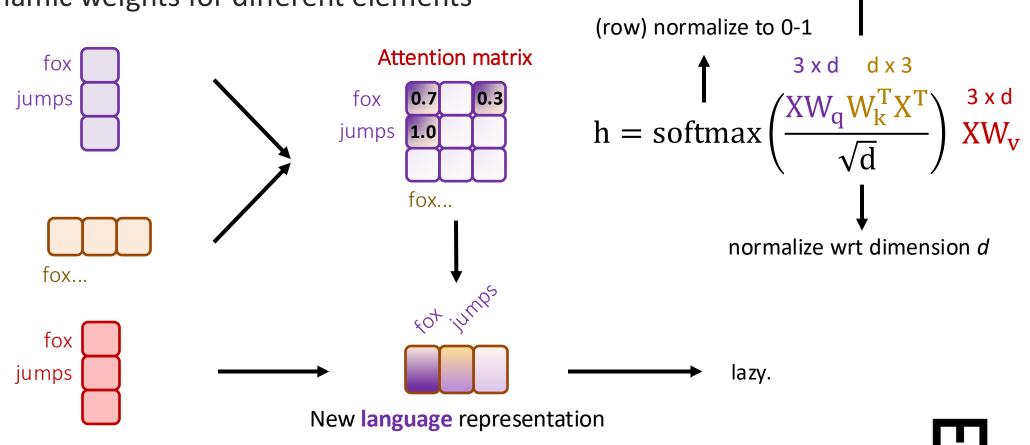
[Vaswani et al., Attention is All You Need. NeurIPS 2017]

Modern Sequence Models

Birth of attention-based models

35

- Dynamic weights for different elements



[Vaswani et al., Attention is All You Need. NeurIPS 2017]

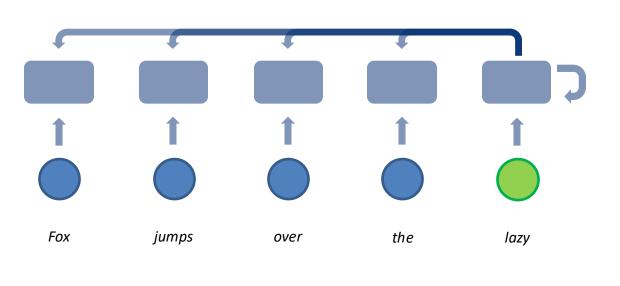
3 x 3

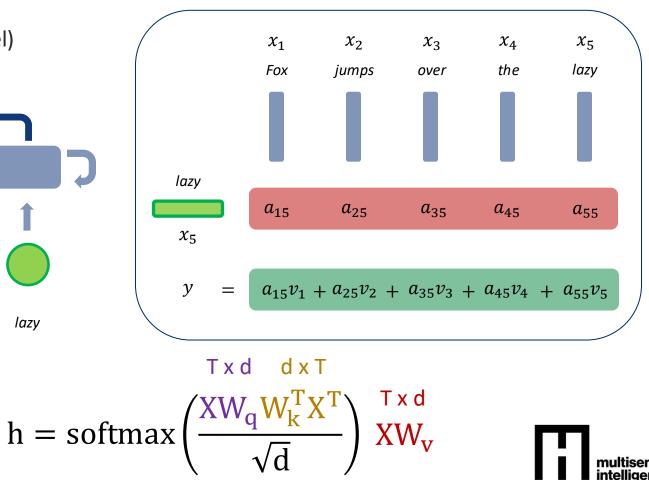
(weighted) outer product

Modern Sequence Models

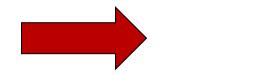
Models for sequential data must be invariant to time, but equivariant to word order.

- 1. Parameter sharing across time steps
- 2. Information aggregation over time (in parallel)





Spatial Data

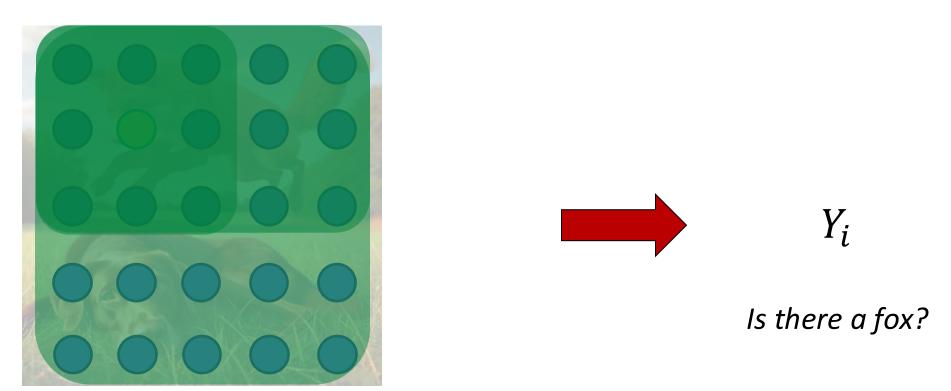


Is there a fox?

 Y_i

How do we aggregate information?

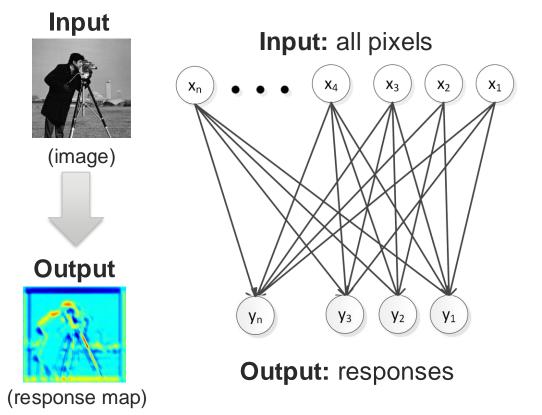
multisensory intelligence



How do we aggregate information?

multisensory intelligence

Models for spatial data need to be invariant to spatial translations.



Not efficient!

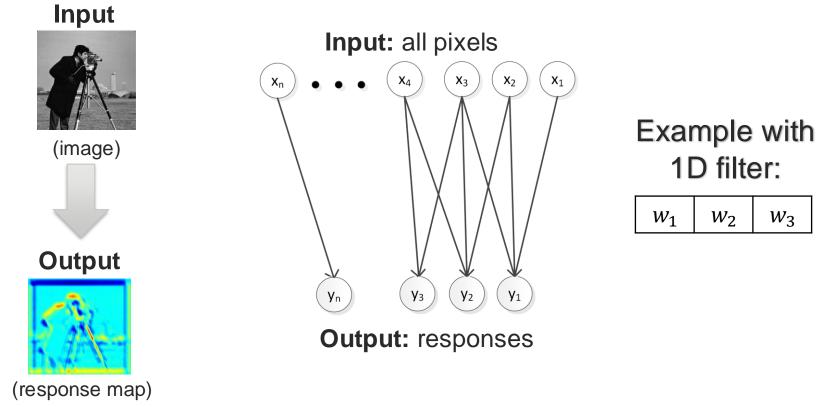
 200×200 image requires $40,000 \times n$ (where ansate is output)

And it may learn different outputs for different pixel positions

Not spatial invariant

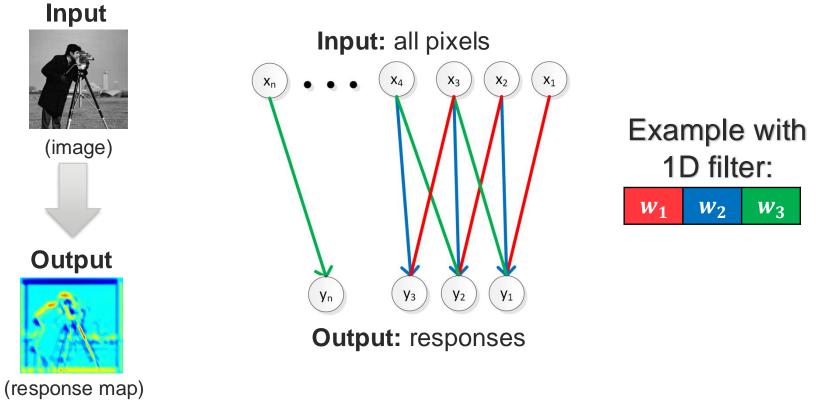
[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

Modification 1: Only apply the filter to a small sliding window -> for efficiency and locality



[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

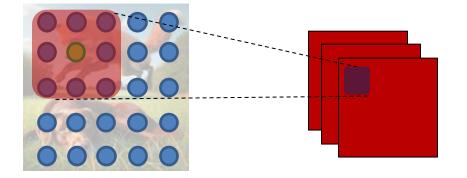
Modification 2: Same filter applied to all sliding windows -> for spatial invariance



[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

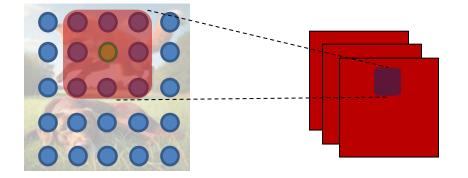
Models for spatial data need to be invariant to spatial translation

1. Parameter sharing across k x k convolutional filter



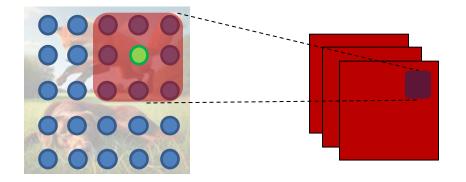
Models for spatial data need to be invariant to spatial translation

1. Parameter sharing across k x k convolutional filter



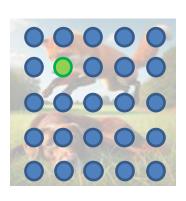
Models for spatial data need to be invariant to spatial translation

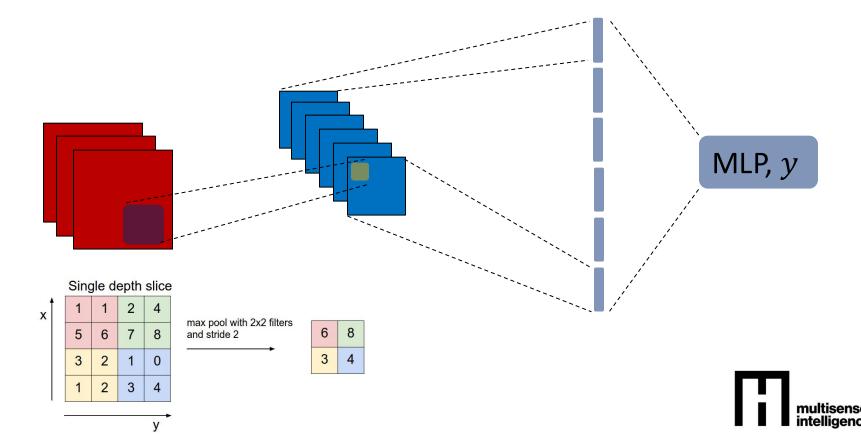
1. Parameter sharing across k x k convolutional filter



Models for spatial data need to be invariant to spatial translation

- 1. Parameter sharing across k x k convolutional filter
- 2. Information aggregation over k x k pooling region





Multiple convolutional layers

Allows the network to learn combinations of sub-parts, to increase complexity

Multiple pooling layers

Allows the network to learn increasingly abstract & summarized information

Objects

Combination of parts

Parts

Edges/blobs

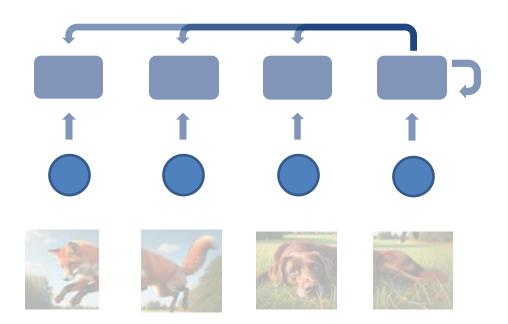
Combination of pixels

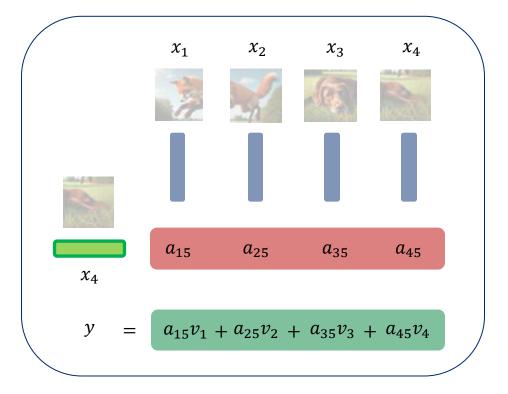
Input pixels

Vision Transformer

Models for spatial data need to be invariant to spatial translation

- 1. Parameter sharing across k x k self-attention region
- 2. Information aggregation over k x k patch region





h = softmax

Txd

 $(XW_{q}W_{k}^{T}X)$

d x T

Txd

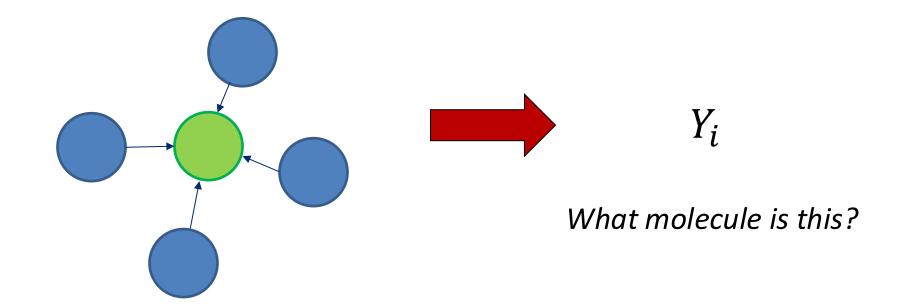
 XW_v

[Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021]

Vision Transformer

[Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021]

Graphs

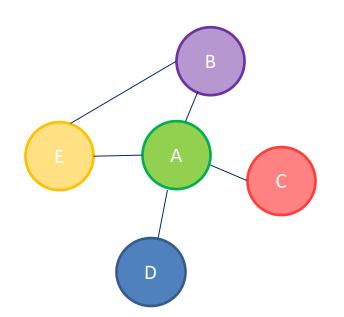


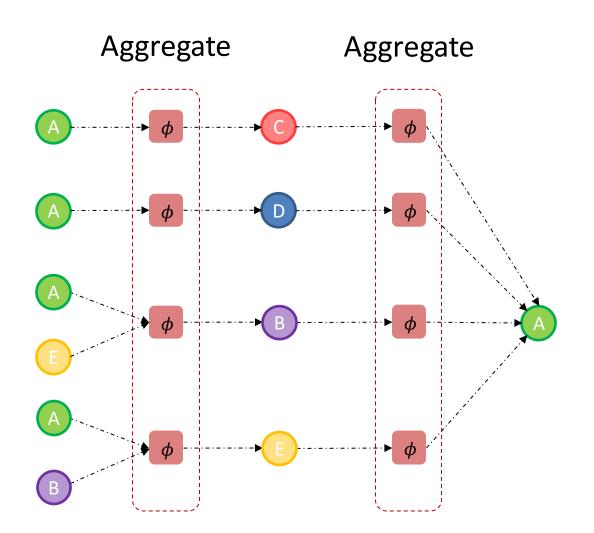
How do we aggregate information?

Graph Neural Networks

Models for graph data:

- 1. Parameter sharing across nodes
- 2. Information aggregation over neighbors (edges)



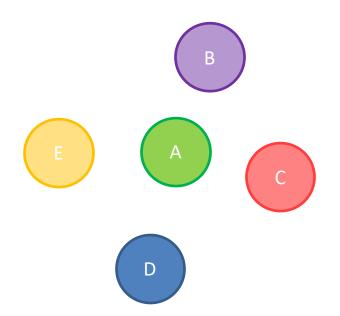


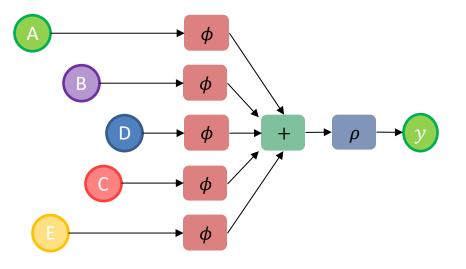
[Velickovic et al., Graph Attention Networks. ICLR 2018] [Yun et al., Graph Transformer Networks. NeurIPS 2019]

Graph Recover Sets

Sets are graphs with only nodes, no edges

- 1. Parameter sharing across nodes -> set elements
- 2. Information aggregation over neighbors -> no neighbors



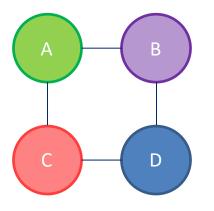


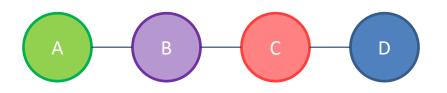
[Zaheer et al., DeepSets. NeurIPS 2017] [Lee et al., Set Transformer. ICML 2019]

Graph Recover Spatial and Temporal Data

Spatial data and sequential data

- 1. Parameter sharing across nodes
- 2. Information aggregation over neighbors





[Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodisics, and Gauges. arXiv 2021]

Summary: How To Model

- 1. Decide how much data to collect, and how much to label (costs and time)
- 2. Clean data: normalize/standardize, find noisy data, anomaly/outlier detection
- 3. Visualize data: plot, dimensionality reduction (PCA, t-sne), cluster analysis
- 4. Decide on evaluation metric (proxy + real, quantitative and qualitative)
- 5. Choose modeling paradigm domain-specific vs general-purpose
- 6. Figure out base elements and their representation
- 7. Figure out data invariances & equivariances (+other parts of modality profile)8. Iterate between data collection, model design, model training, hyperparameter tuning etc. until satisfied.

Lecture Summary

A unifying paradigm of model architectures

Temporal sequence models

1

2

Spatial convolution models

Models for sets and graphs

Assignments for This Coming Week

Reading assignment due tomorrow Wednesday (2/26).

For project:

55

- Project proposal due tonight (2/25). Email to me.
- Meet with me 2-3pm if need feedback about proposal ideas.

This Thursday (2/27): first reading discussion on **data and learning**.