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Assignments for This Coming Week

For project:
• 4-page project proposal due tonight (2/25), email to me.

• Meet with me after class 2-3pm if need feedback about proposal ideas.

Reading assignment due tomorrow Wednesday (2/26).

This Thursday (2/27): first reading discussion on data and learning.

Bitter lesson

Grokking/double descent
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Logistics – Reading Assignments
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Logistics – Reading Assignments
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Lecture Outline

A unifying paradigm of model architectures1

2 Temporal sequence models

3 Spatial convolution models

4 Models for sets and graphs
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Two General Modeling Paradigms 

Domain-specific General-purpose

Custom 

neural nets

Custom 

training 

objectives

Off-the-

shelf LLM

Your decision will depend on many factors.

Off-the-shelf + fine-

tuning/adapting
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Designing Models for Data

What is a good model?

One that captures the:

- right semantic information

- at the right granularity

- using an appropriate amount of data and labels

- with the right resource constraints

- with the right level of usability (explainability, accessibility, etc.)

- and more…
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Domain-specific General-purpose



Lecture Topics (subject to change, based on student interests and course discussions)

Spatial Hierarchical Epoch

Lo
ss
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Domain-specific/custom models

Week 4 (2/25): Common model architectures

Week 5 (3/4): Multimodal connections and alignment

Week 6 (3/11): Multimodal interactions and fusion

Week 7 (3/18): Cross-modal transfer



Lecture Topics (subject to change, based on student interests and course discussions)

General architectures and adapting pre-trained models

Week 9 (4/1): Pre-training, scaling, fine-tuning LLMs

Week 10 – No class, member’s week

Week 11 (4/15): Large multimodal models

Week 12 (4/22): Modern generative AI

An armchair in 

the shape of an 

avocado
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Modality Profile
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1 Element representations:

2 Element distributions:

3 Structure:

4 Information:

5 Noise:

6 Relevance:

Modality A Modality B

Discrete, continuous, granularity

Density, frequency

Temporal, spatial, latent, explicit

Abstraction, entropy

Uncertainty, noise, missing data 

Task, context dependence

𝐻( ) 𝐻( )

𝑦1 𝑦2



Modality Profile

{teacup, right, laptop, clean, room}

{ ,    ,  }

A teacup on the right of a laptop
in a clean room.

1 Distribution: discrete or continuous, support

The distribution of individual elements within that modality.
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Modality Profile

2 Granularity: sampling rate and frequency

words per minute

objects per image

A teacup on the right of a laptop
in a clean room.

The frequency at which elements appear or are sampled.
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Modality Profile

3 Structure: static, temporal, spatial, hierarchical

…

The way elements compose with each other to form entire data.
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Modality Profile

4 Information: entropy and density

A teacup on the right of a laptop
in a clean room.

𝐻( )

𝐻( )

The total information contained in the elements and their composition.

14



Modality Profile

5 Noise: uncertainty, signal-to-noise ratio, missing data 

teacup → teacip 

right → rihjt 

A teacup on the right of a laptop
in a clean room.

The natural imperfections in the data modality.

15



Unified View of Deep Learning Models

1. Learning representations

2. Combining representations (information aggregation)

Model

5

3

1

0

5

0

0
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Unified View of Deep Learning Models

Composing differentiable functions and training objectives.
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Concat Cross-attention Add

2. Basic information aggregation blocks

Max

𝒚

Concat Cross-attention

Fully-conn.

Conv Self-attention

Conv Layer norm

Add

3. Compute loss function

4. Take gradients, update with stochastic gradient descent

1. Basic representation building blocks for each element

ReLU Layer norm Conv Self-attentionFully-connected



A Simple Classification Example

Sets and point clouds
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Set anomaly detection
Set expansion
Set completion
Point cloud classification
Point cloud generation

Point clouds

Sets

[Zaheer et al., DeepSets. NeurIPS 2017]
[Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017]



A Simple Classification Example

Models for set-based data must be invariant to element order.
1. Parameter sharing for each set element

2. Permutation invariant aggregation function
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𝜌
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Giving ABDCE also gives ECBDA, BCAED etc… 

[Zaheer et al., DeepSets. NeurIPS 2017]
[Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017]



A Simple Classification Example
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Need to give ABDCE, then ECBDA, and more…. 5! more samples needed

Models for set-based data must be invariant to element order.
1. No parameter sharing for each set element

2. Permutation invariant aggregation function

[Zaheer et al., DeepSets. NeurIPS 2017]
[Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017]
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A Simple Classification Example
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C

A

E

D

B

𝜙

𝜙

𝜙

𝜙

𝜙

concat 𝜌 𝑦

𝜙

𝜙

𝜙

𝜙

𝜙

concat 𝜌 𝑦

E

A

B

C

D

Need to give ABDCE, then ECBDA, and more…. 5! more samples needed

Models for set-based data must be invariant to element order.
1. Parameter sharing for each set element

2. Not permutation invariant aggregation function

[Zaheer et al., DeepSets. NeurIPS 2017]
[Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2017]



Structure
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[Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodisics, and Gauges. arXiv 2021]

Data invariances – example of image classification

3 sunset



Structure
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Data equivariances – example of image segmentation 

[Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodisics, and Gauges. arXiv 2021]



𝑋𝑖

𝑌𝑖

Lazy 

Sentiment? 
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Elements



𝑋𝑖

𝑌𝑖

Lazy 

jumps over the lazy ?Fox Next word?
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Sequences



jumps over the lazy ?Fox

How do we aggregate information?

𝑌𝑖

Next word?
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Sequences



jumps over the lazy ?Fox

𝑌𝑖

Next word?

How do we aggregate information?
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Sequences



jumps over the lazyFox

𝜙 𝜙 𝜙 𝜙 𝜙

𝑌

28

Sequence Classification

Models for sequential data must be invariant to time, but equivariant to word order.  
1. Parameter sharing across time steps

2. Information aggregation over time (autoregressive)
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Sequence Classification

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)

𝒛(𝑡) =  𝑽𝒉(𝑡)

𝐿(𝑡) = −log 𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = tanh(𝑼𝒙(𝑡))

Feedforward Neural Network

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]
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Sequence Classification

𝑾

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝑽

𝑼

𝐿(𝑡)

𝑦(𝑡)

𝒛(𝑡) =  𝑽𝒉(𝑡)

𝐿(𝑡) = −log 𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = tanh(𝑼𝒙 𝑡 + 𝑾𝒉(𝑡−1))

𝐿 = ෍

𝑡

𝐿(𝑡)

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]
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Sequence Classification

𝒙(1)

𝒛(𝟏)

𝒉(1)

𝑽

𝑼

𝐿(1)

𝑦(1)

𝒙(2)

𝒛(2)

𝒉(2)

𝐿(2)

𝑦(2)

𝑾

𝒙(3)

𝒛(3)

𝒉(3)

𝐿(3)

𝑦(3)

𝒙(𝑡)

𝒛(𝑡)

𝒉(𝑡)

𝐿(𝑡)

𝑦(𝑡)

𝒛(𝑡) =  𝑽𝒉(𝑡)

𝐿(𝑡) = −log 𝑃(𝑌 = 𝑦(𝑡)|𝒛(𝑡))

𝒉(𝑡) = tanh(𝑼𝒙 𝑡 + 𝑾𝒉(𝑡−1))

Same model parameters are used for all time steps.

𝐿 = ෍

𝑡

𝐿(𝑡)

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]



Fox

𝜙 𝜙 𝜙 𝜙 𝜙

𝑌1 𝑌2 𝑌3 𝑌4 𝑌5
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Sequence Generation

𝒉(𝑡) = tanh(𝑼𝒚 𝑡−1 + 𝑾𝒉(𝑡−1))

e.g, text or music generation
Modern versions: RNN -> LSTM -> TCN -> State space models



jumps overFox

𝜙 𝜙

e.g, machine translation -> birth of attention-based models

𝜙 𝜙 𝜙

𝑌1 𝑌2 𝑌3
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Sequence-to-Sequence Models

[Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015]



jumps over the lazyFox

lazy

Fox jumps over the lazy

𝑥5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑎15 𝑎25 𝑎35 𝑎45 𝑎55

𝑦 = 𝑎15𝑣1 𝑎25𝑣2 𝑎35𝑣3 𝑎45𝑣4 𝑎55𝑣5+ + + +
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Modern Sequence Models

Birth of attention-based models

– Dynamic weights for different elements

[Vaswani et al., Attention is All You Need. NeurIPS 2017]



New language representation

fox

jumps

fox...

lazy.

35

Modern Sequence Models

Attention matrix

fox...

fox

jumps

0.7 0.3

1.0

[Vaswani et al., Attention is All You Need. NeurIPS 2017]

Birth of attention-based models

– Dynamic weights for different elements

h = softmax
XWqWk

TXT

d

(row) normalize to 0-1

normalize wrt dimension d

3 x d d x 3

(weighted) outer product

3 x 3

XWv

3 x d

fox

jumps

35



jumps over the lazyFox

lazy

Fox jumps over the lazy

𝑥5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑎15 𝑎25 𝑎35 𝑎45 𝑎55

𝑦 = 𝑎15𝑣1 𝑎25𝑣2 𝑎35𝑣3 𝑎45𝑣4 𝑎55𝑣5+ + + +
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Modern Sequence Models

[Vaswani et al., Attention is All You Need. NeurIPS 2017]

Models for sequential data must be invariant to time, but equivariant to word order.  
1. Parameter sharing across time steps

2. Information aggregation over time (in parallel)

h = softmax
XWqWk

TXT

d

T x d d x T

XWv

T x d



𝑌𝑖

Is there a fox?

How do we aggregate information?

Spatial Data
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𝑌𝑖

Is there a fox?

How do we aggregate information?

Spatial Data

38



Convolutional Neural Networks
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Output

Input

(response map)

(image)

200 × 200 image 

requires

40,000 × 𝑛 

parameters

Not efficient!

(where 𝑛 is size of output)

Not spatial invariant

Input: all pixels

Output: responses

And it may learn different outputs 

for different pixel positions

Models for spatial data need to be invariant to spatial translations.

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]



Convolutional Neural Networks
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Modification 1: Only apply the filter to a small sliding window
 -> for efficiency and locality

𝑤1 𝑤2 𝑤3

Example with 

1D filter:

Input: all pixels

Output: responses

Output

Input

(response map)

(image)

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]



Convolutional Neural Networks
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𝒘𝟏 𝒘𝟐 𝒘𝟑

Input: all pixels

Example with 

1D filter:

Output: responses

Output

Input

(response map)

(image)

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

Modification 2: Same filter applied to all sliding windows
 -> for spatial invariance



Convolutional Neural Networks
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Models for spatial data need to be invariant to spatial translation 
1. Parameter sharing across k x k convolutional filter



Convolutional Neural Networks
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Models for spatial data need to be invariant to spatial translation 
1. Parameter sharing across k x k convolutional filter



Convolutional Neural Networks
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Models for spatial data need to be invariant to spatial translation 
1. Parameter sharing across k x k convolutional filter



MLP, 𝑦

Convolutional Neural Networks

45

Models for spatial data need to be invariant to spatial translation 
1. Parameter sharing across k x k convolutional filter

2. Information aggregation over k x k pooling region



Convolutional Neural Networks
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Input pixels

Edges/blobs

Parts

Objects

Multiple convolutional layers

Allows the network to 

learn combinations of 

sub-parts, to increase 

complexity

Combination of pixels

Combination of edges

Combination of parts

Multiple pooling layers

Allows the network to 

learn increasingly 

abstract & summarized 

information

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]
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𝑥4

𝑥1 𝑥2 𝑥3 𝑥4

𝑎15 𝑎25 𝑎35 𝑎45

𝑦 = 𝑎15𝑣1 𝑎25𝑣2 𝑎35𝑣3 𝑎45𝑣4 + + +

Vision Transformer

[Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021]
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Models for spatial data need to be invariant to spatial translation 
1. Parameter sharing across k x k self-attention region

2. Information aggregation over k x k patch region 

h = softmax
XWqWk

TXT

d

T x d d x T

XWv

T x d



Vision Transformer

[Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021]
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𝑌𝑖

What molecule is this?

How do we aggregate information?

Graphs

49



50

C
AE

D

B

C

D

A

A

E

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

A

Aggregate Aggregate
Graph Neural Networks

50

Models for graph data:
1. Parameter sharing across nodes

2. Information aggregation over neighbors (edges)

[Velickovic et al., Graph Attention Networks. ICLR 2018]
[Yun et al., Graph Transformer Networks. NeurIPS 2019]

B

A

A

B

E



Graph Recover Sets

51

[Zaheer et al., DeepSets. NeurIPS 2017]
[Lee et al., Set Transformer. ICML 2019]

Sets are graphs with only nodes, no edges
1. Parameter sharing across nodes -> set elements

2. Information aggregation over neighbors -> no neighbors

C

A

E

D

B

𝜙

𝜙

𝜙

𝜙

𝜙

+ 𝜌 𝑦

C
AE

D

B



Graph Recover Spatial and Temporal Data

52

Spatial data and sequential data
1. Parameter sharing across nodes

2. Information aggregation over neighbors

A B C D

[Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodisics, and Gauges. arXiv 2021]

A B

C D



Summary: How To Model

1. Decide how much data to collect, and how much to label (costs and time)
2. Clean data: normalize/standardize, find noisy data, anomaly/outlier detection
3. Visualize data: plot, dimensionality reduction (PCA, t-sne), cluster analysis
4. Decide on evaluation metric (proxy + real, quantitative and qualitative)
5. Choose modeling paradigm - domain-specific vs general-purpose
6. Figure out base elements and their representation
7. Figure out data invariances & equivariances (+other parts of modality profile)
8. Iterate between data collection, model design, model training, hyperparameter 
tuning etc. until satisfied.
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Lecture Summary

A unifying paradigm of model architectures1

2 Temporal sequence models

3 Spatial convolution models

4 Models for sets and graphs
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Assignments for This Coming Week

Reading assignment due tomorrow Wednesday (2/26).

For project:
• Project proposal due tonight (2/25). Email to me.

• Meet with me 2-3pm if need feedback about proposal ideas.

This Thursday (2/27): first reading discussion on data and learning.
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